ANG II type 1A receptor signaling causes unfavorable scar dynamics in the postinfarct heart.
نویسندگان
چکیده
Blockade of ANG II type 1A receptor (AT(1A)) is known to attenuate postinfarction [postmyocardial infarction (post-MI)] heart failure, accompanying reduction in fibrosis of the noninfarcted area. In the present study, we investigated the influence of AT(1A) blockade on the infarcted tissue itself. Consistent with earlier reports, AT(1A) knockout (AT(1A)KO) mice showed significantly attenuated left ventricular (LV) remodeling (dilatation) and dysfunction compared with wild-type (WT) mice. Morphometry revealed that the infarcted wall was thicker and had a smaller circumferential length in AT(1A)KO than WT hearts. In addition, significantly greater numbers of cells were present within infarcts in AT(1A)KO hearts 4 wk post-MI; most notably, there was an abundance of vessels and myofibroblasts. One week post-MI, the incidence of apoptosis among granulation tissue cells was fewer (3.3 +/- 0.4 vs. 4.4 +/- 0.5% in WT, P < 0.05), whereas vessel proliferation was higher in AT(1A)KO hearts, which likely explains the later abundance of cells within the scar tissue. Insulin-like growth factor receptor-I was upregulated and its downstream signal protein kinase B (Akt) was significantly activated in infarcted AT(1A)KO hearts compared with WT hearts. Inactivation of Akt with wortmannin partially but significantly prevented the benefits observed in AT(1A)KO. Collectively, in AT(1A)KO hearts, Akt-mediated granulation tissue cell proliferation and preservation resulting from antiapoptosis likely contributed to an abundant cell population that altered the infarct scar structure, thereby reducing wall stress and attenuating LV dilatation and dysfunction at the chronic stage. In conclusion, altered structural dynamics of infarct scar and increasing myocardial fibrosis may be responsible for the deleterious effects of AT(1A) signaling following MI.
منابع مشابه
AT(2) receptor-mediated vasodilation in the heart: effect of myocardial infarction.
To investigate the functional consequences of postinfarct cardiac angiotensin (ANG) type 2 (AT(2)) receptor upregulation, rats underwent coronary artery ligation or sham operation and were infused with ANG II 3-4 wk later, when scar formation is complete. ANG II increased mean arterial pressure (MAP) more modestly in infarcted animals than in sham animals. The AT(1) receptor antagonist irbesart...
متن کاملThe effect of progressive aerobic continuous training on angiotensin-1, angiotensin-2 and angiotensin-converting enzyme type 2 in patients with heart failure
Background: Chronic hypertension causes structural and functional changes in the heart, ultimately leading to heart failure (HF), which further increases mortality and morbidit. HF is a complex clinical syndrome caused by various structural or functional abnormalities of the heart that impair the filling capacity of the ventricles. The findings of various trials have shown the association betwe...
متن کاملGuanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.
BACKGROUND Guanylyl cyclase (GC)-A, a natriuretic peptide receptor, lowers blood pressure and inhibits the growth of cardiac myocytes and fibroblasts. Angiotensin II (Ang II) type 1A (AT1A), an Ang II receptor, regulates cardiovascular homeostasis oppositely. Disruption of GC-A induces cardiac hypertrophy and fibrosis, suggesting that GC-A protects the heart from abnormal remodeling. We investi...
متن کاملAldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors.
RATIONALE Aldosterone has been shown to induce vascular damage, endothelial dysfunction, and myocardial fibrosis, which depend in part on activation of angiotensin II (Ang II)-mediated pathways. However, mechanisms underlying crosstalk between Ang II type 1 receptor (AT(1)R) and mineralocorticoid receptor (MR) are mostly unknown. OBJECTIVES We tested whether the lack of Ang II type 1a recepto...
متن کاملRole of internalization in AT(1A) receptor function in proximal tubule epithelium.
Angiotensin II (ANG II), acting through angiotensin type I (AT(1)) receptors on apical and basolateral surfaces of proximal tubule epithelial cells, increases sodium reabsorption in proximal tubules. Apical and basolateral receptors internalize after exposure to ANG II, but the role of internalization in receptor signaling and transport is not well defined. To determine the role of receptor int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007